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particles reside on a brane but the Higgs is an elementary extra-dimensional scalar in the

bulk. We show that, for codimension 2 branes, often-neglected interactions between the

bulk Higgs and the branes cause two novel effects. First, they cause 〈H〉 to depend only

logarithmically on the UV-sensitive coefficient, m2
B, of the mass term, m2

B H
∗H, of the bulk

potential, thus providing a new mechanism for tackling the hierarchy problem. Second, the

Higgs brane couplings cause the lowest mass KK mode to localize near the brane without

any need for geometrical effects like warping. We explore some preliminary implications

such models have for the Higgs signature at the LHC, both in the case where the extra

dimensions arise at the TeV scale, and in ADD models having Large Extra Dimensions.

Novel Higgs features include couplings to fermions which can be different from Standard

Model values, mf/v, despite the fermions acquiring their mass completely from the Higgs

expectation value.
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1. Introduction

In the Standard Model (SM) the Higgs field is in many ways the odd man out. In the

absence of the Higgs the only interactions that remain are gauge interactions, characterized

by only a handful of coupling constants. But with the Higgs comes the deluge of parameters

that parameterize our ignorance of the ultimate origins of the model’s many masses and
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mixing angles. And among these parameters is the one dimensionful quantity, µ, that

governs the size of the µ2H∗H term in the Higgs potential, and by fixing the size of the

Higgs v.e.v. sets the scale for all masses. It is the sensitivity of this parameter to much

heavier scales that is at the root of the hierarchy problem [1].

Historically, the hierarchy problem has been one of the main motivations for exploring

brane-world scenarios for physics beyond the Standard Model [2, 3], for which all of the ob-

served SM particles are trapped on a (3+1)-dimensional brane within an extra-dimensional

bulk. Motivated by the observations that the Higgs is the lone SM particle yet to be ob-

served, we here explore the idea that it is the only SM particle that is not confined to a

brane: i.e. whereas all other SM particles live on a brane, the Higgs lives in the bulk. The

hope is that this might account for its special role within the SM.

Brane-world models with the Higgs in the bulk have been examined in the litera-

ture, most often within the context of 5D Randall-Sundrum constructions [3]. Yet these

models differ from the present proposal in one of two ways: either by imagining the extra-

dimensional Higgs to be related to other fields by supersymmetry [4, 5]; or by taking the

Higgs to be the 4D scalar component of what is ‘really’ an extra-dimensional gauge po-

tential [6, 7]. The motivation for doing so is the expectation that the extra-dimensional

gauge symmetries can help alleviate the hierarchy problem, potentially allowing some of

the properties of Higgs interactions to be unified with those of the gauge interactions. Im-

plicit in this is the belief that a Higgs that is a bona-fide extra-dimensional scalar makes

no progress towards alleviating the hierarchy problems of the usual 4D Higgs.

A model more similar to the one studied here was considered in ref. [8, 9], although from

a different point of view. In ref. [8] the authors study the effects of codimension-2 brane

couplings on a massless bulk scalar, with a focus on couplings close to the critical value

for which the symmetry-breaking properties of the vacuum change. Ref. [9] generalizes

to massive bulk fields, but without the focus of this paper on the hierarchy problem, and

consequently without the study of couplings to fermions and gauge bosons described herein.

It is simple to see why extra dimensions in themselves are generally believed not to

alleviate the hierarchy problem. This is because the Higgs potential,

U = −m
2
B

2
H∗H +

g

4
(H∗H)2 , (1.1)

is always minimized by H∗H = m2
B/g, where in n dimensions g has the (engineering)

dimension of (mass)4−n while mB always simply has the dimension of mass. But the

essence of the hierarchy problem is that because mB is proportional to a positive power of

mass, it generically receives contributions from heavy particles that grow with the mass,

M , of the particles involved, and so is dominantly affected by the heaviest such particle

that can contribute. Since mB is a positive power of mass in any number of dimensions it

is hard to see how the hierarchy problem can be ameliorated simply by placing the Higgs

into the bulk.

In this paper we show why this simple argument is incorrect once the couplings between

a bulk Higgs and the brane are properly taken into account. The brane-bulk interactions

change the argument because the Higgs potential on the brane, Ub, and in the bulk, UB, can
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disagree on which value of the Higgs v.e.v. has the least energy. In this case the system

generically resolves this potential frustration by appropriately balancing these potential

energies with the gradient energies which punish the field for attempting to interpolate

between the two minima. But if the brane has codimension 2 (i.e. there are two dimensions

transverse to the brane, such as for a (3+1)-dimensional brane situated in a 6D bulk), the

Higgs likes to vary logarithmically near the branes, and the gradient energy associated

with this variation is such that the resulting v.e.v. only depends logarithmically on the

UV-sensitive term, mB, of the bulk potential. Braneworld models can help with naturalness

problems for a number of reasons; brane-bulk couplings provide a new way for them to do

so. We show that the lunch is nevertheless not completely free, however, since the hierarchy

problem gets partially recast as a requirement for the coefficients of the brane interactions

(H∗H)2 and DMH
∗DMH being required to be suppressed by very different scales. This

kind of hierarchical suppression usually does not arise between two operators like these,

that are not distinguished by low-energy symmetries or selection rules.

We also show how Higgs-brane interactions change another fundamental piece of

widely-held intuition regarding the properties of a bulk Higgs. In the presence of a (posi-

tive) extra-dimensional mass term, UB = +1
2 m

2
BH

∗H, the spectrum of Kaluza-Klein (KK)

states would usually be expected to consist of a multitude of levels (generically spaced by

Mc ∼ 2π/L for a toroidal extra dimension of circumference L, say) that start at energies

above a gap, mk ≥ mB. We show here that brane-Higgs interactions can generically in-

troduce a state which lives within this gap, m < mB, that is ‘bound’ in the sense that its

wave-function is localized at the position of the brane. We call this the ‘self-localized’ state

inasmuch as its localization is a consequence only of the Higgs self-interactions and not on

any geometric effects, such as those due to warping.

These arguments are presented in more detail in their simplest context in the next

section, §2. §3 then tries to fashion an approach to the hierarchy problem by providing

a preliminary discussion of the kinds of interactions that would be required for a realistic

model, and the ways in which the low-energy Higgs couplings resemble and differ from those

of the SM Higgs, as a function of the scales involved. §4 then follows with a discussion

of some of the potential signatures and constraints such a scenario might have for Higgs

physics. Our conclusions are briefly summarized in §5.

2. Vacuum energetics of extra-dimensional scalars

In this section we describe the interplay between brane and bulk energetics for the simplest

toy model: a single real scalar, φ, in the presence of both brane and bulk potentials, Ub

and UB. We first review the more familiar situation of a codimension-1 brane in a 5D bulk,

and then contrast this with the codimension-2 case with 6 bulk dimensions. (The situation

for higher codimension is sketched in appendix C.) Because they are peripheral to our

main point we neglect gravitational effects in what follows, and so assume the mass scales

involved are low enough for this to represent a good approximation.
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2.1 Codimension-one

We first consider the codimension-one case, reproducing the results of ref. [10]. Consider

the following 5D scalar field theory, having both bulk- and brane-localized interactions,

S = −
∫

d4xdy

[

1

2
(∂Mφ∂

Mφ) + UB(φ) + δ(y)Ub(φ)

]

, (2.1)

with {xM} = {xµ, y}. The field equation for this model is

∂M∂Mφ− U ′
B(φ) = δ(y)U ′

b(φ) , (2.2)

and the integration of this equation across the brane position (assuming continuity of φ)

further implies the scalar jump condition

[∂yφ]0 = U ′
b(φ0) , (2.3)

where φ0 = φ(y = 0) and [A]0 = A(y = 0+) −A(y = 0−). The classical energy density per

unit brane volume associated with a given field configuration in this model is then

H =

∫ ymax

ymin

dy

[

1

2

(

φ̇2 + (∇φ)2 + (∂yφ)2
)

+ UB(φ)

]

+ Ub(φ0) , (2.4)

where ymin < 0 < ymax and ∇ denotes differentiation in the in-brane spatial directions,

{xi}.
We now specialize to the case where the field has only a mass term in the bulk, while

it has a quartic interaction on the brane. Keeping in mind that φ has dimension (mass)3/2

in 5 dimensions,

UB(φ) =
1

2
m2

B φ
2 and Ub(φ) = −1

2
mb φ

2 +
1

4M2
b

φ4 , (2.5)

where mb > 0 is chosen to ensure that the minimum of the brane potential occurs at the

nonzero value φ2 = M2
bmb, in contrast with the bulk potential which is minimized at φ = 0.

Since Ub and UB are not minimized by the same configuration, the vacuum solution

need not correspond to a constant field configuration, ∂Mφ = 0. Since the solutions to

the field equations that only depend on y are exponentials, φ ∝ e±mBy, the general bulk

solution is a linear combination of such terms. If the extra dimension is sufficiently large —

|mBymin| ≫ 1 and mBymax ≫ 1 — then we can drop the solutions which grow exponentially

far from the brane, just as if the extra dimension were noncompact. In this case the vacuum

configuration should vanish at infinity, and the solution is therefore given by

φ(y) = φ̄ e−mB |y| , (2.6)

where φ̄ is to be fixed using the boundary condition, eq. (2.3), at y = 0: i.e. −2mBφ̄ =

U ′
b(φ̄), or

(

2mB −mb +
φ̄2

M2
b

)

φ̄ = 0 . (2.7)
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When mb < 2mB the only real solution allowed is φ̄ = 0, but when mb > 2mB there are

three solutions for φ̄, corresponding to φ̄ = 0 and φ̄ = ±φc, with

φ2
c = M2

b (mb − 2mB) . (2.8)

Since H = 0 for φ̄ = 0 and H = −1
4M

2
b (mb − 2mB)2 for φ̄2 = φ2

c , we see that it is the

nontrivial configuration which represents the classical ground state when mb > 2mB. This

can also be seen more generally by writing the energy density as a function of φ̄,

H(φ̄) = −1

2
(mb − 2mB) φ̄2 +

1

4M2
b

φ̄4 , (2.9)

which is indeed minimized, for mb > 2mB, by φ̄ = ±Mb
√
mb − 2mB, with the unstable

stationary point, φ̄ = 0, situated at a local maximum.

The resulting vacuum

φ2(y) = M2
b (mb − 2mB) e−2mB |y| , (2.10)

extrapolates from the bulk minimum (φ = 0) for large y to the value φ0 = ±Mb
√
mb − 2mB

at the brane. This represents a compromise between the bulk minimum, the value φ̄ =

±Mb
√
mb, which minimizes Ub, and the gradient energy required to interpolate between the

two. Notice that φ0 approaches the brane minimum in the limit where the bulk potential

is very flat, mB ≪ mb.

2.2 Codimension-two

We now contrast the previous results with a similar analysis for the codimension-2 case of

a real scalar field coupled to a 3-brane in 6 spacetime dimensions, where we show that the

larger gradient energy more strongly favors the minimum of the bulk potential relative to

that of the brane. Using the action

S = −
∫

d4xd2y

[

1

2
(∂Mφ∂

Mφ) + UB(φ) + δ2(y)Ub(φ)

]

, (2.11)

we have the equation of motion

∂M∂Mφ− U ′
B(φ) = δ2(y)U ′

b(φ) . (2.12)

Assuming a flat space-time metric

ds2 = ηµνdxµdxν + dr2 + r2dθ2 , (2.13)

and integration of the equation of motion across a very small disc centered on the brane

position at r = 0 (assuming continuity of φ) further implies the condition

lim
r→0

[2πr∂rφ] = U ′
b(φ0) , (2.14)

where r measures the radial distance from the brane situated at r = 0. For configurations

depending only on r, this corresponds to using the radial field equation

1

r
∂r

(

r ∂rφ
)

− U ′
B(φ) =

δ+(r)

2πr
U ′

b(φ) , (2.15)
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where δ+(r) is normalized so that
∫ a
0 drδ+(r)f(r) = f(0), for any a > 0.

Since our interest is in how the system resolves the frustration of minimizing brane

and bulk potentials having different minima, we specialize to the simple choices

UB(φ) =
1

2
m2

Bφ
2 and Ub(φ) = −1

2
λ2 φ

2 +
1

4
λ4 φ

4 , (2.16)

with both λ2 and λ4 taken to be positive. Keeping in mind a 6D scalar field has dimension

(mass)2, we see that the parameter λ2 is dimensionless, while λ4 = 1/M4
b .

Provided the extra dimensional radius, L, satisfies mBL≫ 1, it is a good approxima-

tion to demand the bulk vacuum configuration to vanish at large r, leading to the following

solution

φ(r) = φ̄ K0(mBr) , (2.17)

where the modified Bessel function, K0(z), falls exponentially with z for large z and diverges

logarithmically as z approaches zero. Using K0(z) = − ln(z/2) − γ + O(z) to evaluate

r∂rφ→ −φ̄ as r → 0, allows the boundary condition, eq. (2.14), to be written

−2πφ̄ = U ′
b(φ0) , (2.18)

and here we encounter the first difference from the codimension-2 case: φ(r) diverges

logarithmically as r → 0, making φ0 = φ(r = 0) ill defined. Regularizing1 by evaluating at

a small but nonzero radius, r = ǫ, gives φǫ = φ̄ zǫ, where

zǫ ≡ K0(mBǫ) = ℓ+ ln 2 − γ + O(ǫ) , (2.19)

with ℓ = − ln(mBǫ) diverging logarithmically when ǫ → 0 and γ = 0.5772 . . . being the

Euler-Mascheroni constant.

The trouble here lies in the fact that the classical solution for the bulk field coupled

to a brane diverges when evaluated at the brane source. This is a completely generic

feature for branes having codimension 3 or larger — e.g. the divergence of the Coulomb

field at the position of the source charge. It is also generic for codimension 2, although

exceptions in this case also arise, such as for the conical singularities arising in the static

gravitational fields sourced by some [13 – 15] but not all [16, 11] codimension-2 branes.

And the generic resolution to this problem lies in the need to renormalize the brane-bulk

couplings even at the classical level [17, 18]. As these references show (and is briefly

summarized in appendix B), the requirement that bulk φ propagators be finite implies the

brane couplings also diverge logarithmically in the limit ǫ→ 0, with the result

λ2 =
λ̄2

1 + λ̄2ℓ̂/2π
and λ4 =

λ̄4
(

1 + λ̄2ℓ̂/2π
)4 , (2.20)

1This regularization can be done more precisely by modelling the codimension-2 brane by a small

codimension-1 circle at radius r = ǫ, and using the codimension-1 jump conditions to relate the exterior

bulk fields to the nonsingular fields in the circle’s interior [11, 12].

– 6 –
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where the λ̄i are renormalized quantities that remain finite in the limit that ǫ→ 0, and

ℓ̂ = − ln(µǫ) = ℓ+ ln

(

mB

µ

)

, (2.21)

for an arbitrary renormalization scale µ. For later purposes we remark that because the

term in the action involving λ2 is quadratic in φ, it is possible to evaluate the classical

scalar propagator, including the brane-bulk mixing, without having to assume that λ2 or

λ̄2 are small (see appendix B for details). In particular the domain of validity of eq. (2.20)

includes the regime of large λ̄2.

If we regularize by replacing φ0 with φǫ, the boundary condition which determines φ̄

becomes

− 2πr ∂rφ+ U ′
b(φ) = 2πφ̄+ U ′

b(φǫ) =
(

2π − λ2 zǫ + λ4 z
3
ǫ φ̄

2
)

φ̄ = 0 . (2.22)

For λ2 < 2π/zǫ this only admits the trivial solution, φ̄ = 0, but for λ2 > 2π/zǫ three

solutions are possible: φ̄ = 0 and φ̄ = ±φc, with

φ2
c =

(λ2 − 2π/zǫ)

λ4 z2
ǫ

. (2.23)

Notice that the criterion distinguishing the existence of one or three solutions depends

only logarithmically on mB (through its appearance in zǫ), and can be phrased in

a regularization-independent manner by trading λ2 for λ̄2. In particular, the condi-

tion λ2 < 2π/zǫ ensuring only φ̄ = 0 is a solution then becomes λ̄2 < 2π/c, where

c = ln 2 − γ − ln(mB/µ) defines the finite part of zǫ ≡ ℓ̂+ c.

The physical content of these expressions becomes clearer once the relative energy of

these solutions is computed using the classical energy density, H(φ̄), which is finite once it

is expressed in terms of the renormalized quantities λ̄i. Explicitly, we have

H = lim
ǫ→0

{

2π

∫ ∞

ǫ
rdr

[

1

2
(∂rφ)2 +

1

2
m2

Bφ
2

]

+ Ub(φǫ)

}

(2.24)

= lim
ǫ→0

{

πφ̄2

∫ ∞

mBǫ
dz z

[

(

K ′
0

)2
+ (K0)

2
]

+ Ub(φǫ)

}

. (2.25)

The integral may be evaluated in closed form (see appendix A), to give

H = lim
ǫ→0

{

−π
2
φ̄2m2

Bǫ
2K0(mBǫ)

[

K0(mBǫ) −K2(mBǫ)
]

− 1

2
λ2φ

2
ǫ +

1

4
λ4φ

4
ǫ

}

= lim
ǫ→0

{

πφ̄2zǫ −
1

2
λ2φ̄

2z2
ǫ +

1

4
λ4φ̄

4z4
ǫ + O(ǫ)

}

, (2.26)

which uses the asymptotic form K2(mBǫ) ≃ 2/(mBǫ)
2 for small ǫ. Using the asymptotic

limit of eq. (2.20) for λ̄2ℓ̂≫ 2π,

λ2 ≃ 2π

ℓ̂

[

1 −
(

2π

λ̄2ℓ̂

)

+ · · ·
]

and λ4 ≃
(

2π

λ̄2ℓ̂

)4

λ̄4 + · · · , (2.27)
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we find the finite limit

H =
1

2
g2 φ̄

2 +
1

4
g4φ̄

4 with g2 = 2π

(

2π

λ̄2
− c

)

and g4 =

(

2π

λ̄2

)4

λ̄4 , (2.28)

where c = ln 2 − γ − ln(mB/µ), as above.

Notice the kinetic energy has combined with the bulk potential energy to partially

cancel the quadratic term in the brane potential, with the solution φ̄ = 0 being energetically

preferred for λ̄2 < 2π/c — the same criterion found earlier. Notice also that c > 0 if

µ > µ⋆ = 1
2 e

γmB ≃ 0.89mB , and c < 0 if µ < µ⋆. c vanishes at the dividing case, µ = µ⋆,

at which point the quadratic term is simply

g2 =
4π2

λ2⋆
, (2.29)

with λ2⋆ ≡ λ̄2(µ⋆). In terms of renormalized quantities the criterion for symmetry breaking

becomes λ2⋆ < 0, in which case the scalar v.e.v. is

φ2
c = −g2

g4
= − λ3

2⋆

4π2λ̄4
. (2.30)

These calculations illustrate how the vacuum energetics of a bulk scalar depends cru-

cially on the codimension of the brane to which it is coupled. In all cases the competition

between gradient and potential energies in general allows the brane potential to drag the

bulk scalar v.e.v. away from the value which minimizes UB. But in the codimension-1 case

the marginal strength of brane instability which distinguishes a nonzero from a vanishing

v.e.v., mb = 2mB, depends strongly on the UV-sensitive scale mB. By contrast, the corre-

sponding criterion for codimension-2 branes, λ̄2 = 2π/c, is comparatively insensitive to mB

because it is the larger gradient energies which replace UB in dominating the fight against

Ub. (The situation for higher codimension is explored in appendix C, below.)

2.3 The self-localized state

Since we expect the quadratic term in H to describe the mass of small fluctuations about

the background configuration, there is a potential puzzle hidden in the weak dependence

of g2 on mB. To see why, suppose the two extra dimensions are a square torus of volume

V2 = L2, for which in the absence of the brane interactions we would normally expect a

Kaluza Klein spectrum to be labelled by two integers, n1 and n2, with masses

M2
n1n2

= m2
B +M2

c (n2
1 + n2

2) ≥ m2
B , (2.31)

where Mc = 2π/L. The puzzle is that all of these states have masses larger than mB, a

result which seems hard to reconcile with a mass governed by the size of the quadratic

term, 1
2 g2φ̄

2, of H.

We next show that the resolution of this puzzle lies in the existence of a lower-mass

‘bound’ state whose mass lies in the gap, m < mB, and whose presence relies on the

influence of the interactions between φ and the brane. Furthermore, this state is localized

– 8 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
1

near the brane by these interactions, in the sense that its wave-function falls exponentially

away from the brane, with a characteristic size of order aB ∼ 1/k, where k2 = m2
B −m2.

We call this the self-localized state, inasmuch as its localization is a direct consequence of

the scalar-brane interactions (rather than due to a geometric effect, like warping, such as

considered in ref. [19]).

The fluctuation spectrum. To this end consider small fluctuations in the bulk scalar

field,

φ(t, r, θ) = ϕ(r) + Φnω(r)einθ−iωt , (2.32)

labelled by their energy, ω, and angular momentum,2 n. ϕ(r) here denotes any of the vac-

uum configurations described above. The field equation obtained by linearizing eq. (2.12)

in polar coordinates is

1

r
∂r

(

r ∂rΦnω

)

− n2

r2
Φnω − k2Φnω =

δ+(r)

2πr

(

−λ2 + 3λ4ϕ
2
)

Φnω , (2.33)

where k2 = m2
B −ω2. For the purposes of identifying the bound state we further specialize

to axially symmetric modes, and so set n = 0.

The steps for solving for Φω closely parallel those taken above to find the background

solution. Away from r = 0 the bulk solution is a linear combination of the modified Bessel

functions, K0(kr) and I0(kr), although in the limit kL ≫ 1 the admixture of I0(kr) can

be made negligibly small. In this case the background configuration is ϕ = φ̄ K0(mBr) and

the fluctuation solutions are well approximated by3

Φω(r) = NωK0(kr) , (2.34)

with Nω an appropriate normalization constant (e.g. N2
ω = k2/π when kL ≫ 1). (In this

notation the tower of KK states having masses greater than mB correspond to the ordinary

Bessel functions obtained when k is pure imaginary.) The eigenvalue, k, is obtained by

imposing the boundary condition at r = 0, which becomes

2πNω + U ′′
b (ϕ)Φω(r = 0) =

(

2π − λ2ẑǫ + 3λ4z
2
ǫ ẑǫφ̄

2
)

Nω = 0 , (2.35)

where zǫ = − ln(mBǫ/2) − γ = ℓ̂+ c is as defined above, and ẑǫ is the same quantity with

mB → k: i.e. ẑǫ = zǫ +ln(mB/k). This equation is to be read as being solved for k, leading

to the result ẑǫ = 2π/(λ2 − 3λ4z
2
ǫ φ̄

2), or

ln

(

k

mB

)

= zǫ −
2π

λ2 − 3λ4z2
ǫ φ̄

2
= ℓ̂+ c− 2π

λ2 − 3λ4(ℓ̂+ c)2φ̄2

= c− (2π/λ̄2) − (3λ̄4φ̄
2/λ̄2)(2π/λ̄2)

3 + O(1/ℓ̂)

→ −
(

2π

λ2⋆

)[

1 +

(

12π2λ̄4φ̄
2

λ3
2⋆

)]

as ǫ→ 0 . (2.36)

2We assume here an axially-symmetric bulk, such as might be generated (say) by two branes.
3Intriguingly, recasting the field equation to remove the single-derivative term, through the redefinition

φ = ψ/r1/2, leads to the Schrödinger equation for motion of a point particle in a 1/r2 potential supplemented

by a δ-function at the origin. This much-studied equation is known to exhibit the interesting phenomena

of dimensional transmutation [20] and nontrivial limit cycles [21].
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Consequently, k = mB e
−2π/λ2eff , or

ω2 = m2
B − k2 = m2

B

[

1 − e−4π/λ2eff

]

, (2.37)

where
1

λ2eff
=

1

λ2⋆

[

1 +

(

12π2λ̄4φ̄
2

λ3
2⋆

)]

. (2.38)

Clearly this state lives in the gap, with ω < mB, provided only that λ2eff > 0, and this

mass can be hierarchically small if λ2eff ≫ 4π (which lies within the domain of validity of

the approximations used, as emphasized in appendix B).

There are now two cases to consider. When λ2⋆ > 0 we have φ̄ = 0 and so λ2eff = λ2⋆ >

0, showing that the self-localized state exists. In the limit λ2⋆ ≫ 4π we find k ≃ mB and

ω2 ≃ 4πm2
B/λ2⋆ = g2m

2
B/π ≃ g2N

2
ω, in agreement with the result computed from d2H/dφ̄2

(once care is taken to canonically normalize the 4D scalar field). Alternatively, when

λ2⋆ < 0 we have φ̄ = ±φc, with φc given by eq. (2.30), and so λ2eff = −1
2λ2⋆ > 0. Again a

bound state exists whose mass agrees with the result, −2 g2N
2
ω, obtained by differentiating

H(φ̄).

3. A self-localized bulk Higgs and the hierarchy problem

Because the above vacuum energetics show that the expectation value of a bulk scalar

coupled to a codimension-2 (or higher codimension) brane is less sensitive to the details of

the model’s ultraviolet completion it can be used to provide a new approach to tackling the

stability issue of the hierarchy problem. This section builds a simple illustrative example

of this mechanism, in order to get a sense of its implications.

3.1 The model

The mechanism’s defining assumption is that the usual Standard Model Higgs doublet,

H(x, y), is located in an extra-dimensional bulk, while all of the other Standard Model

particles — i.e. its gauge fields, Aa
µ(x), and fermions, ψk(x) — reside on a brane whose

codimension is at least two. (In practice we focus on the codimension-2 case in what

follows, but generalizations to more general codimension are conceptually straightforward.)

We take the brane potential to prefer an SUL(2) × UY (1) breaking phase, while the bulk

potential favors SUL(2) × UY (1) invariance:

UB = m2
B H

∗H and Ub = −λ2H
∗H + λ4 (H∗H)2 , (3.1)

where m2
B, λ2 and λ4 are all real and positive (evaluated at mBǫ≪ 1).

We have seen that the classical vacuum of the higher-dimensional theory depends

crucially on the sign of the renormalized coupling, λ2⋆, defined at the (large) scale µ⋆ ≃
0.89mB . Notice in this regard that eq. (2.20) implies that both signs of λ2⋆ can be consistent

with positive λ2 when ℓ = − ln(mBǫ) is sufficiently large. We take λ2⋆ < 0 in order to ensure

that the total classical energy is minimized by an SUL(2) × UY (1) breaking configuration.

If we had had SUL(2) × UY (1) invariance throughout the bulk we would at this point

be able to perform a gauge transformation to ensure that the Higgs doublet everywhere
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takes the unitary gauge form, H = 1√
2
(0, χ)T , with χ real. However because we only

have gauge invariance at the brane position this choice can only be made at ym = 0:

H0 = 1√
2

(0, χ0)
T , where H0 ≡ H(x, 0). Away from the brane H in general contains 4 real

fields, H = 1√
2
(ζ1 + iζ2, χ+ iζ3)

T , each of which must solve its appropriate field equations.

The arguments of the previous sections imply that the classical vacuum solutions may

be constructed in terms of K0(mBr) and I0(mBr), with the coefficient of I0(mBr) negligibly

small when the extra dimensions are large compared with m−1
B — i.e. mBL≫ 1:

ζi(r) = ζ̄iK0(mBr) and χ(r) = χ̄K0(mBr) . (3.2)

As before the normalizations, ζ̄i and χ̄, are determined by the boundary conditions at

r = 0, and so ζ̄i = 0 due to the choice of unitary gauge at the brane, which implies

ζi(0) = 0 there. By contrast, the arguments of previous sections go through verbatim to

imply χ̄ ≡ V 2, with

V 4 = − g2
g4

= − λ3
2⋆

(2π)2λ̄4
= − λ3

2⋆

(2π)3
M4

b , (3.3)

where we define λ̄4/2π = 1/M4
b .

Similar arguments for the fluctuations, δH, show that in general all four components,

δζi and δχ, are nonzero in the bulk. However the choice of unitary gauge at the brane

endows δζi with the boundary condition that it must vanish, and this in turn implies that

none of these fields localizes at the branes in the same way that δχ does.

Since SU(2) × U(1) is only a global symmetry in the bulk, one might worry that its

breaking by H implies that the δζi contain KK towers of Goldstone modes that are system-

atically light compared with mB. These could be phenomenologically dangerous, even if

their couplings must be derivatively suppressed [22]. However (as shown in appendix D in

more detail) the only Goldstone modes in the bulk-Higgs sector are the three self-localized

states for the fields δζi that are eaten by the brane gauge fields via the usual Higgs mecha-

nism. All other states with energies smaller than mB are typically removed by the boundary

condition that requires δζi to vanish at the brane, leaving the lightest remaining bona fide

KK modes in δζi with a mass of order mB.

3.2 Scales and naturalness

We now ask how V depends on the other scales in the problem, in order to identify whether

the choices required to have sufficiently small masses for electroweak gauge bosons are

technically natural — i.e. stable against integrating out very heavy degrees of freedom.

The model potentially involves several scales: among which are the compactification

scale, Mc; the scale of extra-dimensional gravity, M∗ ≫ Mc, (or perhaps the string scale),

which controls our neglect of gravitational physics; the scale of brane structure,4 Λ = 1/ǫ,

used in earlier regularizations, and so on. In principle the UV scale, M ≫Mc, to which we

imagine being potentially sensitive, can be any one of these, or some other scale associated

with other types of heavy particles.

4For instance, such structure might ultimately arise if the 3-brane were really a higher-dimensional brane

wrapped about further, smaller extra dimensions.
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Our choices of scales are restricted by the domain of validity of approximations used

in our calculations. For instance, use of codimension-2 branes without resolving the brane

structure when discussing the UV physics implies Λ ≫ M . Ignoring (for simplicity) the

influence of the second brane on the mode functions (i.e. dropping the admixture of I0(kr))

assumes k ≫Mc, where k2 = m2
B−m2 for the self-localized mode. Neglect (for convenience)

of gravitational effects requires both M∗ ≫ Mc, and the condition that the spacetime

curvatures generated by the configurations of interest to be small compared with M2
∗ . For

instance if H takes values of order V 2 that change over distances of order ǫ, then the

resulting gradient energies do not overly gravitate if (∂H)2/M6
∗ ∼ (V/M∗)4(Λ/M∗)2 ≪ 1.

In what follows we assume all of these conditions to hold. The question we ask is not

whether these hierarchies themselves are stable under renormalization (as this would require

more information, such as specifying a stabilization mechanism for the size of the extra

dimensions), but rather whether the choices required of the Higgs potential to obtain an

acceptably small V are stable against renormalization, given the presence of these (and

possibly other) scales.

This requires an estimate of the corrections to UB and Ub that might arise as various

kinds of heavy particles are integrated out. Although a precise statement of this requires

specifying the theory’s UV completion, some generic statements are possible on dimensional

grounds for the corrections due to integrating out heavy particles that interact through

small dimensionless couplings. This is because if such a particle has a large mass M ,

then its generic contribution to a coupling, λi, having dimension (mass)n is δλi ∝ Mn.

According to this kind of estimate we expect

δm2
B ∝M2 , δλ2 ∝ lnM and δλ4 ∝M−4 . (3.4)

As a result it is natural to expect the corrections to mB to be dominated by the heaviest

particles that can contribute, and so generically expect mB to be comparable to the largest

scales in the problem (and in particular to satisfy mB ≫ Mc and mB ≫ MW ). It is the

large size of these contributions to mB that underlie the usual formulation of the hierarchy

problem in 4 dimensions, because in this case the scale of the Higgs v.e.v. turns out to be

proportional to |mB|.
By contrast, in the 6D model of present interest we have seen that the size of the Higgs

v.e.v. is largely independent of mB, depending dominantly on the dimensionless coupling

λ̄2 and the dimensionful coupling λ̄4. But λ̄2 is dimensionless, and so tends to depend only

logarithmically on the large UV scale M . Potentially more dangerous is λ̄4/2π = 1/M4
b

since this more directly sets the size of V . However this is also not UV sensitive because

corrections to it vary inversely with the relevant particle mass on dimensional grounds, and

so are dominated by the contributions of the lightest particles, rather than the heaviest.

As stated above, we emphasize that our goal here is not to provide an ultraviolet

completion of the bulk-Higgs model, as would be required to understand in detail the

conditions necessary to produce a large hierarchy in the first place, as this goes beyond the

scope of this paper. Our goal is instead to point out how the introduction of Higgs bulk-

brane couplings allows interestingly different mass-dependence in low-energy observables,

and to study what this might imply for the low-energy sector.

– 12 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
1

3.3 Higgs-induced mass terms

The phenomenology of any such Higgs hinges on the form of its couplings to observed

Standard Model particles, which are assumed in this framework to be localized on a brane.

Gauge couplings. At first sight it is bizarre to restrict the SM gauge fields to a brane

and yet allow a charged matter field (the Higgs doublet) live in the bulk. This is bizarre

because the SUL(2) × UY (1) symmetry transformations are global transformations in the

bulk (since there is no spin-one field there to ‘gauge’ them), yet are local on the brane.

Nonetheless, it must be possible because we could imagine the UV completion of the brane

of interest being an ordinary gauge-Higgs theory containing vortex- or domain-wall-type

defects. Since the Higgs field defining the defect typically vanishes at the interior of such a

vortex/domain-wall, there generically should be spin-1 states which would be very massive

given the nonzero Higgs in the bulk, but which can remain light by being localized on the

brane. (D-branes also contain localized spin-1 fields.)

More precisely, it can be shown that gauge invariance of such a theory can always be

ensured through an appropriate choice of effective interactions (or counter-terms) on the

brane. Slightly generalizing the discussion of ref. [23] to codimension two, we may see this

formally by taking the Higgs covariant derivatives to be

DMH(x, y) = ∂MH(x, y) − δ2(y)δµ
M iκgA

a
µ(x)TaH(x, y) . (3.5)

Here Ta are gauge generators, and as before the xµ lie along the brane directions while

the ym are transverse. g here denotes the dimensionless gauge coupling on the brane and

κ is a dimensionful constant, required in order to counter the dimensions of the delta

function. One reason for the need for brane counter-terms can be seen because the off-

brane components of this covariant derivative are not actually covariant under the gauge

transformation

δH(x, y) = δ2(y)iκΩa(x)TaH(x, y) , (3.6)

even when supplemented by the standard xµ-dependent nonabelian transformations of

Aa
µ(x). They are not because there is no gauge potential in DmH = ∂mH to cancel the

term arising when the derivative acts on the delta function. There is however a counterterm

that can be added on the brane such that the entire combination is gauge invariant.

The implications of a bulk Higgs v.e.v. for gauge boson masses can be seen by writing

out the bulk and brane kinetic terms

Lkin = −
∫

d2y DMH
∗DMH − κbDµH

∗
0DµH0

= −
∫

d2y
[

∂MH
∗∂MH

]

− (κ+ κb)DµH
∗
0DµH0 + κ∂µH

∗
0∂

µH0 (3.7)

+
κg2

2
[1 − κδ2(0)] (H∗

0 {Ta, Tb}H0)A
a
µA

bµ ,

where DµH0 ≡ ∂µH0 − igAa
µTaH0 is the standard covariant derivative on the brane. This

shows that all of the gauge-boson mass terms appear in the brane kinetic term provided
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κ δ2(0) = 1 (and so κ = O(ǫ2)). Notice that this implies κ + κb ∼ κb for any scale

κb ≫ O(ǫ2).

Superficially the gauge-boson mass obtained from these equations diverges as ǫ → 0,

due to the divergence there of H0. However, this divergence is countered by the renormal-

ization of all Higgs-brane interactions due to the generic ‘dressing’ of these couplings [17, 18]

by the Higgs-brane mixing, λ2:

κb =
κ̄b

(1 + λ̄2ℓ̂/2π)2
. (3.8)

Going to unitary gauge at the brane position, for which H0 = 1√
2

(0, χ0)
T , with 〈χ〉 =

V 2K0(mBr), we then have κb〈χ0〉2 = κ̄bV
4(2π/λ2⋆)

2 as ǫ→ 0.

The SUL(2) ×UY (1) doublet structure of the Higgs then leads in the standard way to

the prediction MZ = MW/ cos θW , where θW is the weak mixing angle, and the W -boson

mass is, MW = 1
2 gv, with

v2 =

(

2π

λ2⋆

)2

κ̄bV
4 = (246 GeV)2 . (3.9)

Taking κ̄b = 1/f2, this shows that successful phenomenology requires V 2 = fv(|λ2⋆|/2π):

i.e. V is the geometric mean between 246 GeV and the scale |λ2⋆|f/2π:

V ∼ 109 GeV

( |λ2⋆|f/2π
1015 GeV

)1/2

. (3.10)

Recall that within the present framework we have V 4 = |λ2⋆/2π|3(2π/λ̄4) — c.f.

eq. (3.3) — so defining Mb by λ̄4/2π = 1/M4
b as before we see that eq. (3.9) also im-

plies that Mb must be of order

Mb ∼
√

vf

(

2π

|λ2⋆|

)1/4

. (3.11)

This requires either Mb ∼ f
√

2π/|λ2⋆| ∼ v, or a hierarchy v ≪ Mb ≪ f
√

2π/|λ2⋆|, if

f
√

2π/|λ2⋆| ≫ v. In the absence of a symmetry which forbids a Higgs kinetic term but

allows a quartic (H∗H)2 interaction on the brane, naturalness argues we should take f

and Mb to be the same order of magnitude, in which case any hierarchy between Mb and

v must be due to |λ2⋆|/2π being very large or very small. Furthermore, having f and Mb

both larger than v requires |λ2⋆|/2π <∼ O(1).

Fermion couplings. Fermion masses in this picture are similarly given by Yukawa cou-

plings between brane-based fermions, ψk, and the bulk Higgs doublet. In unitary gauge on

the brane, H0 = 1√
2

(0, χ0)
T , these have the form

Lyuk =
yij

F
(ψiψj)χ0 , (3.12)

for yij a collection of dimensionless Yukawa couplings, and F representing an appropriate

ultraviolet scale. The resulting fermion masses are

mij =
yij

F
〈χ0〉 =

2πȳij V
2

λ2⋆F
(3.13)
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with

yij =
ȳij

1 + λ̄2ℓ̂/(2π)
, (3.14)

being the renormalized Yukawa coupling, as required to counter the divergence of H at

the brane position, and the second equality in eq. (3.13) uses yij〈χ0〉 = 2πȳijV
2/λ2⋆ in the

limit ǫ→ 0, where 〈χ〉 = V 2K0(mBr).

Since Lyuk breaks flavor symmetries — unlike the Higgs kinetic terms — the scale

F need not be of the same order of magnitude as5 f . In particular, since the dominant

contributions to couplings having dimensions of inverse mass come from the lightest scales

to contribute, F is typically set by the smallest UV scale which involves flavor-violating

physics while f can be much smaller than this. Because of this eqs. (3.9) and (3.13)

may contain the seeds of an explanation of the observed smallness of most fermion masses

relative to those of the electroweak gauge bosons, since

mij

MW

=
ȳij

g

(

2f

F

)

. (3.15)

Even a mild hierarchy, F ≫ f , removes some of the burden of having to require ȳij/g to

be very small.

3.4 Couplings to the Higgs fluctuations

We have seen that the spectrum of fluctuations in the Higgs field generically contains an

assortment of KK modes, many of whose masses start above a large gap, mKK
>∼ mB. For

mB sufficiently large these modes need not play an important role in low-energy observables.

The two exceptions to the above statement are the bulk Goldstone modes, whose masses

are generically of order Mc, and the self-localized state whose mass can lie within the gap

below mB, and be hierarchically smaller if |λ2⋆| ≫ 2π. Furthermore, this latter state is

present regardless of whether or not the Higgs v.e.v. is nonzero. These light states are

likely to be the ones relevant to Higgs phenomenology in Bulk Higgs models, and so this

section computes their couplings.

The bulk Goldstone modes. The simplest couplings to compute are those of the bulk

Goldstone modes, δζi, because their vanishing at the brane position guarantees they com-

pletely drop out of any brane couplings that depend only on H0 or ∂µH0, and not on

off-brane derivatives like ∂mH0. In particular this ensures their removal (in unitary gauge)

from the fermion Yukawa couplings and gauge couplings described above.

The self-localized state. Normalizing the wave-function of the self-localized state in

the extra dimensions gives a canonically normalized 4D state h, where χ = h(x)NωK0(kr),

so yijχ = (2π/λ2⋆)(k/
√
π)ȳijh, with k2 = m2

B −m2
h. The couplings of h to fermions are

then given by interactions of the form

L4D =
2πȳij

λ2⋆

(

k√
πF

)

(ψiψj)h , (3.16)

5This could arise, say, if the 3-brane is really a higher-dimensional brane wrapped in extra dimensions,

and the flavor structure is associated with this wrapping, since this would suggest F ≃ Λ ≫ f .
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leading to dimensionless ‘physical’ Yukawa couplings of order

ŷij =
2πȳij

λ2⋆

(

k√
πF

)

= ysm
ij

(

mB√
πf

)(

2π

λ2⋆

)

e−4π/|λ2⋆| , (3.17)

where the argument of the exponential assumes λ2⋆ < 0 (as required for a nonzero Higgs

v.e.v.), and the last equality compares to what would be expected in the SM:

ysm
ij ≡ mij

v
= ȳij

(

f

F

)

. (3.18)

Notice that the quantity (2π/|λ2⋆|) exp[−4π/|λ2⋆|] falls to zero for large and small |λ2⋆|,
taking the maximum value of 0.18 when |λ2⋆|/2π = 2.

These expressions show that the self-localized Higgs couplings, ŷij, can differ signifi-

cantly from what would be expected in the SM, for two reasons. First, ŷij can be larger

than ysm
ij if mB ≫ f , and if sufficiently large the self-localized state becomes a strongly

coupled broad resonance. Second, ŷij can differ from ysm
ij because of its dependence on

λ2⋆/2π, which acts to suppress ŷij/y
sm
ij in the limit that |λ2⋆|/2π is either very large or

very small. This possibility of having ŷij differ from the SM expectation contrasts with 4D

intuition based on the couplings of a single scalar whose v.e.v. generates mass, since such

a scalar must have couplings given by the ratio mij/v. The reason this conclusion does

not hold in the extra-dimensional case is that because the v.e.v., 〈H(x, 0)〉, responsible for

generating masses generically receives contributions from many KK modes and not just

the v.e.v. of the single 4D self-localized state, h.

4. Possible signatures of a bulk Higgs scenario

We next sketch some of the qualitative signatures and constraints that might be expected

for the kind of Higgs scenario described above. What is to be expected depends somewhat

on the choices made for the various scales in the problem, so we divide the discussion

according to four simple options according to whether or not we take |λ2⋆| to be large or

small, and whether we take Mc ∼ 1 TeV, or Mc ∼ 10−2 eV (as for large-extra-dimensional

models).

4.1 Inclusive processes

We first consider inclusive processes for which a specific Higgs state is not measured, and

so which involve a summation over all possible KK modes. These are largely insensitive to

the specifics of individual modes, such as the details of the self-localized state.

Fermion-fermion scattering. An important inclusive observable is the rate for fermion-

fermion scattering mediated by a virtual Higgs. The amplitude for this process is of order

A(ψiψj → H → ψrψs) ≃
yij yrs

F 2
iGp(0; 0) δ

4(pi + pj − pr − ps) , (4.1)

where pµ ≡ (pi + pj)
µ = (pr + ps)

µ. Here Gp(y; y
′) is the bulk Higgs propagator, Fourier

transformed in the brane directions, xµ, but evaluated in position space in the off-brane
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directions, ym. Gp(0; 0) denotes the same quantity evaluated at the brane position, and is

given (see appendix B for details) in terms of the corresponding propagator in the absence

of brane-Higgs couplings, Dp(y; y
′), by

Gp(0; 0) =
Dp(0; 0)

1 − iλ2Dp(0; 0)
. (4.2)

Eliminating yij, yrs and λ2 in terms of the renormalized quantities, ȳij, ȳrs and λ̄2, and

taking ǫ→ 0, we find the finite result

A(ψiψj → H → ψrψs) ≃ ȳij ȳrs

λ̄2F 2

[

1

1 − iλ̄2D
µ
p (0; 0)

]

δ4(pi + pj − pr − ps)

≃
ysm

ij ysm
rs

λ̄2f2

[

1

1 − iλ̄2D
µ
p (0; 0)

]

δ4(pi + pj − pr − ps) , (4.3)

where iDµ
p (0; 0) = (1/2π) ln(µ/P ), where P 2 = p2 +m2

B.

If this same process were computed using the exchange of a massive 4D SM Higgs

scalar, we’d have instead obtained

Asm(ψiψj → H → ψrψs) ≃ ysm
ij ysm

rs

[

1

p2 +m2
H

]

δ4(pi + pj − pr − ps) , (4.4)

and so the leading effect is to replace the scale p2 + m2
H by λ̄2f

2[1 − iλ̄2D
µ
p (0; 0)]. The

absence of an observed signal therefore implies the order-of-magnitude bound

λ̄2f
2

[

1 +
λ̄2

2π
ln

(

P

µ

)]

>∼ O(100 GeV)2 , (4.5)

where P 2 = (pi + pj)
2 +m2

B = (pr + ps)
2 +m2

B.

If reactions of this type were to mediate flavor-changing neutral currents, the strong

restrictions on these could potentially bound the scale F to be quite large. However,

because the Yukawa couplings can have the same flavor structure as in the SM, there can

be a GIM mechanism at work [24] that naturally suppresses the dangerous flavor-changing

neutral current (FCNC) reactions produced by bulk-Higgs exchange. We henceforth assume

this to be true, and therefore do not further worry about bounds on the fermion couplings

due to FCNCs.

Vacuum polarization. As is well known, the contributions to loops of the SM Higgs is

well constrained by precision electroweak measurements. The main source of these contri-

butions is through the Higgs contribution to the vacuum polarization of the electroweak

gauge bosons. For an extra-dimensional bulk Higgs, this contribution is of order

Πµν
ab (p) ≃ g2κ2

b tr(TaTb)

∫

d4q

(2π)4
(2p − q)µ(2p− q)ν iGq(0; 0) iGp−q(0; 0)

≃ g2κ̄2
b

λ̄2
2

tr(TaTb)

∫

d4q

(2π)4

[

(2p − q)µ(2p − q)ν

[1 − iλ̄2D
µ
p (0; 0)][1 − iλ̄2D

µ
p−q(0; 0)]

]

, (4.6)
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plus a possible tadpole term. Since the remaining integration, d4q, diverges in the ul-

traviolet it must be regularized, and this is most conveniently done using dimensional

regularization.

Of most interest for phenomenological purposes is the contribution to the oblique

parameters S, T and U [1, 25], which involve those terms in Πµν
ab having the tensor structure

(p2ηµν − pµpν). Since the Higgs is an SUL(2) × UY (1) doublet, it automatically preserves

the accidental custodial SUc(2) symmetry [1, 26] that preserves the successful mass relation

MW = MZ cos θW , thereby suppressing its contribution to T and making S of most interest.

Because all mass dependence in eq. (4.6) is logarithmic, recalling the definition κ̄b = 1/f2

and extracting the conventional factors of g2/4π, we obtain the estimate

S ∼ 1

4πλ̄2
2

(

p4

f4

)

, (4.7)

where p2 represents the momentum transfer of interest. Applied to LEP experiments we

may take p4 = M4
Z and |S| < 0.1 to conclude λ̄2f

2 >∼ v2.

4.2 Higgs decays to fermions

Another class of observables involve specifying a specific Higgs KK mode. Perhaps the

simplest of these is the decay rate for specific Higgs states into SM particles (although this

decay need not dominate the lifetime of a given KK mode because it must also compete

with other channels, such as off-brane decays into the Goldstone modes δζi).

Generic KK states. For simplicity we start with the decay of a generic KK mode into

brane fermions, assuming the KK wave-functions, Ψ(y), extend throughout much of the

extra-dimensional bulk so that |Ψ(0)|2 ≃ 1/V2 ≃ M2
c . Once excited, such a heavy state

can decay through the interaction (3.12), with the rate

Γ(χ→ ψ̄iψj) ≃ |Ψ(0)|2 |yij|2
F 2

Mχ ≃ |yij|2
(

Mc

F

)2

Mχ , (4.8)

where Mχ ≥ mB is the mass of the decaying mode. (Recall that the bulk Goldstone modes,

δζi, do not decay in this way because of the requirement that they vanish at the brane.)

We see that Γ ≪Mχ naturally follows from the smallness of the quantities yij and Mc/F

(the latter of which is particularly small in the case of large extra dimensions). Whether

these are the dominant decay channels depends on the availability of light states in the

bulk (or on other branes) into which competing decays can proceed, and how efficiently

these Higgs decays occur.

The self-localized state. Notice that yij vanishes, strictly speaking, when ǫ → 0 with

ȳij and λ̄2 held fixed (making eq. (4.8) vanish logarithmically in this limit). The same is

not true of the self-localized state, whose wave-function also diverges logarithmically at

the position of the brane as ǫ→ 0. In this case the decay rate can be computed using the

interaction of eq. (3.16), leading (on neglect of final-state fermion masses) to the standard
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4D expression

Γ(h→ ψ̄iψj) =
1

8π
|ŷij |2 mh = Γsm(h→ ψ̄iψj)

(

m2
B

πf2

)(

2π

λ2⋆

)2

e−16π/|λ2⋆| , (4.9)

which remains nonzero as ǫ → 0. This drops dramatically, as required in the unlocalized

limit, as |λ2⋆| → 0, and scales as Γsmm4
h/(16πm

2
Bf

2) when |λ2⋆| ≫ 2π.

4.3 TeV-scale compactifications

Suppose, first, the compactification scale, Mc, lies in the TeV range and so, in the absence of

significant warping, the 4D Planck scale, Mp ∼M2
∗ /Mc, comes out right if M∗ ∼ 1010 GeV.

This leaves lots of room to choose the other scales of interest to be much smaller than M∗
in order to justify our neglect of gravitational interactions. We do not speculate as to how

the extra-dimensional size is stabilized at this scale.

Choosing Mc this large also ensures that this is the mass of the lightest KK mode of

the bulk Goldstone bosons, δζi, ensuring that these modes do not play much of a phe-

nomenological role until energies are reached — at the LHC, God willing — that allow the

direct production of KK excitations. The same is true of the generic KK modes of the field

χ, provided we also choose mB to be large enough.

We have seen that the absence of Higgs detection in oblique or in 2-fermion to 2-fermion

processes implies us to choose f
√

|λ2⋆| to be at least several hundred GeV, whereas our use

of a 6D calculational framework requires both f and Mb ∼
√
vf(2π/|λ2⋆|)1/4 to be >∼ Mc.

There are then two subcategories to consider, depending on the size of |λ2⋆|/2π.

Weak localization. Consider first the limit of small |λ2⋆|, for which mh → mB and

k → 0. Because k is small, the ‘bound’ state is not strongly localized relative to generic

extra dimensional scales, and the breakdown of the approximation k ≫Mc demands we go

beyond the simple large-volume limits used above for the scalar v.e.v. and wave-function.

Taking |λ2⋆| ∼ 0.01 for illustrative purposes, we see that requiring f > Mc ∼ few TeV

automatically ensures f
√

|λ2⋆| >∼ several hundred GeV, and so is large enough to avoid the

phenomenological bounds.

For weak localization, the exponential suppression of ŷij for small |λ2⋆| allows us to

choose mB to be much larger than f without the Higgs-fermion couplings becoming strong.

However we cannot have all χ states be too much higher than the TeV scale without there

being a breakdown of the low-energy effective theory, such as through the development of

unitarity problems in the scattering of longitudinal W bosons that the SM would suffer in

the absence of a low-energy Higgs particle [1, 27, 28], and this puts an upper bound on

how large mB can be. In this case the χ spectrum resembles the usual intuition for bulk

fields in the absence of brane couplings, consisting of a tower of Higgs KK modes starting

above the gap at mB. Furthermore, because these particles are likely to have a significant

decay rate into the lighter bulk Goldstone states, any observed Higgs is likely to have a

significant invisible width.

Because mB cannot be made exceedingly large without running into troubles, and

because Mc is typically smaller, it should be possible to observe some of the Higgs KK
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states at the LHC. Although the mass-Mc Goldstone states cost less energy, they are more

difficult to produce because of the absence of direct couplings to the initial brane-based

SM particles. The most likely channel for doing so is the virtual excitation of KK modes of

the bulk state χ. Convincing evidence for these Goldstone states together with an absence

for KK modes for the electroweak gauge bosons would provide the smoking gun for this

scenario: with the Higgs in the bulk but gauge interactions localized to live only on the

branes.

Strong localization. In the opposite limit, |λ2⋆| ≫ 2π, the lowest energy state becomes

localized to the brane with k ≃ mB, and its mass drops to m2
h ≃ 8πm2

B/|λ2⋆| ≪ m2
B. In this

case mB can be higher than it could for weak localization, provided that the self-localized

state is lighter than a few TeV and so can unitarize the scattering of longitudinal gauge

boson modes.

An upper limit to how large mB can be is found from the condition that this light,

localized Higgs state be weakly coupled

∣

∣

∣

∣

∣

ŷij

ysm
ij

∣

∣

∣

∣

∣

2

≃ 8

π

(

mB

f

)2 ∣
∣

∣

∣

2π

λ2⋆

∣

∣

∣

∣

3

≃ 1

8π

(

mh

f

)2(mh

mB

)4

. (4.10)

Large |λ2⋆| also implies that the condition f > Mc automatically ensures the validity of

the phenomenological limits that require f
√

|λ2⋆| to be larger than several hundred GeV,

and makes the strongest constraint on f the theoretical condition that Mb be larger than

Mc.

For instance for moderately large |λ2⋆|/2π ∼ 102, then keeping mh at the TeV scale

requires mB ≃ 10 TeV, and taking Mb ∼ 1 TeV then implies f ∼ 10 TeV. By contrast, if mB

should be the largest scale considered so far, mB ∼M∗ ∼ 1010 GeV, then |λ2⋆|/2π ∼ 1020,

and so Mb ∼ 10−5f > 1 TeV implies a strong hierarchy between Mb and f > 105 GeV

whose naturality would have to be explained. Notice that the physical couplings, ŷij, are

much smaller than for the SM given these scales.

In this case mB could easily be large enough to preclude the direct detection of a Higgs

KK spectrum, even at the LHC, leaving the burden of Higgs physics carried by the single

self-localized Higgs state. In principle this can be distinguished from a SM Higgs in several

ways. First, it could well have a large invisible width, if the mass of the self-localized state

is sufficiently large compared with the mass, Mc, of the bulk Goldstone modes. Second,

it can be distinguished by identifying the difference in the strength of its couplings to

fermions from those expected in the SM.

4.4 Large extra dimensions

An alternative choice [2, 15, 29] would put the scale of extra-dimensional gravity at M∗ ∼
10 TeV, which then requires Mc ∼ 10−2 eV. As a result, the upper bound mB < M∗
automatically keeps the generic Higgs KK modes light enough to potentially be seen at the

LHC, yet absence of the detection of Higgs KK modes also implies mB cannot be much

below the TeV scale.
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An automatic consequence of having Mc so small is to make the bulk Goldstone states,

δζi, essentially massless. This ensures that they are always kinematically available as final

states for χ decays, making a significant invisible width for this state inevitable. In fact,

the very lightest KK Goldstone modes in this scenario are light enough to mediate forces

between macroscopic bodies, with generically near-gravitational strength, making them

potentially relevant to precision tests of Newton’s inverse-square law for gravity. Their

presence is nonetheless unlikely to have been already ruled out due to the absence of direct

couplings to brane matter, and the derivative nature of their Goldstone interactions.

In this scenario the conditions f,Mb >∼ Mc pose no significant constraint, with more

information coming from the phenomenological conditions that f
√

|λ2⋆| be larger than a

few hundred GeV. Notice that if we also require f <∼ M∗ then we must have an upper

bound |λ2⋆| <∼ 104, and so the self-localized state cannot be more than a few orders of

magnitude lighter than mB.

Because the KK tower of modes is so narrowly spaced — by O(Mc) – they provide

almost a continuum of states. Although each of these modes couples with gravitational

strength, their phase space makes their inclusive production cross section of order the weak-

interaction size [2]. Once the Higgs is produced, its phenomenology is likely to resemble

that of extra-dimensional gravitons [30] or other bulk matter fields [31], including likely

large invisible decay channels.

5. Conclusions

In this paper we examine a new way for brane-world scenarios to change how we think

about low-energy naturalness problems. We do so by showing how oft-neglected couplings

to branes can dramatically change the vacuum energetics and low-energy spectrum for bulk

scalar fields. In particular, we show that when coupled to codimension-2 branes bulk scalar

fields can have two unusual properties:

• They can acquire v.e.v.s that are only logarithmically related to the size of the UV-

sensitive quadratic term, 1
2m

2
Bφ

2, in the bulk Higgs potential;

• They can acquire low-energy KK modes that are localized to the branes (without the

need for warping), and whose mass can lie inside the naive gap below the energy set

by the mass scale mB.

We further use these two observations to explore the possibility of building phenomeno-

logical brane-world models for which all Standard Model particles (save the Higgs) are

trapped on a brane, but with the Higgs allowed to live in the bulk. We estimate the size

of the effective couplings of such a Higgs to gauge bosons and fermions on the brane, and

use these to estimate the sizes of masses and couplings to the Higgs KK modes.

We do not try to identify ultraviolet completions of the bulk-Higgs model, and so do

not identify at a microscopic level why the electroweak hierarchy exists in the first place.

Our focus is instead on whether such a hierarchy can be technically natural purely within

the low-energy theory. We identify in eq. (3.3) the main obstacle to systematically raising
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the UV scale of this effective theory above the weak scale, since this equation generically

requires the two dimensionful parameters f and Mb — governing the size of the brane

potential term (H∗H)2/M4
b and the brane kinetic term (DMH

∗DMH)/f2 — either to

satisfy Mb ∼ f
√

2π/λ2⋆ with both near the electroweak scale, or to satisfy the hierarchy

Mb ≪ f
√

2π/λ2⋆ if both are large compared with the electroweak scale. This latter

hierarchy shows how the problem gets recast with a bulk Higgs, since both interactions

are allowed by the same symmetries, making it unnatural for them to have coefficients

suppressed by very different scales.

We provide a very preliminary discussion of possible signals and constraints on these

models, including the observation that most realizations predict a significant invisible width

for any observed ‘Higgs’, once detected. Simple estimates are made of Higgs decay rates

into SM particles, the scattering rate for fermions due to virtual Higgs exchange, and the

contribution of virtual Higgs loops to gauge boson vacuum polarization. These are used

to outline the qualitative features of Higgs phenomenology within this class of models. In

all cases we find that the phenomenology of these models is sufficiently interesting to bear

further, more detailed study.
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A. Some properties of Bessel functions

This appendix summarizes a few properties of modified Bessel functions which are used

in the main text. The modified Bessel functions are linearly independent solutions to the

differential equation

z2y′′ + zy′ − (z2 + ν2)y = 0 , (A.1)

with Iν(z) chosen to be regular at z = 0 andKν(z) chosen to fall off to zero as z → ∞. They

are defined in terms of ordinary Bessel functions, Jν(z), and Hankel functions, H
(1)
ν (z), by

Iν(z) = i−νJν(iz) and Kν(z) =
π

2
iν+1H(1)

ν (iz) . (A.2)

The expansion of these functions for small argument is used in the text. For 0 < z ≪√
ν + 1 it is given by

Iν(z) ≃ 1

Γ(ν + 1)

(z

2

)ν
, K0(z) ≃ − ln

(z

2

)

−γ and Kν(z) ≃ Γ(ν)

2

(

2

z

)ν

if ν > 0 .

(A.3)
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The asymptotic form at large z is similarly given (for z ≫
∣

∣ν2 − 1
4

∣

∣) by

Iν(z) ≃
1√
2πz

ez and Kν(z) ≃
√

π

2z
e−z . (A.4)

The energy integral encountered in the main text can be evaluated explicitly, using

the following Bessel-function identities

K ′
ν = −Kν−1 −

νKν

z
= −Kν+1 +

νKν

z
, (A.5)

which imply in particular K ′
0 = −K1, K

′
1 = −K0 − K1/z = −K2 + K1/z and K ′

2 =

−K1 − 2K2/z. Repeated application of these shows that

d

dz

[

1

2
z2
(

K2
0 −K2

1

)

]

= z K2
0 and

d

dz

[

1

2
z2
(

K2
1 −K0K2

)

]

= z K2
1 , (A.6)

and so

z
(

K2
0 +K2

1

)

=
d

dz

[

1

2
z2K0

(

K0 −K2

)

]

. (A.7)

B. Classical divergences in brane couplings

This appendix summarizes the derivation of the renormalization of the codimension-2 cou-

plings encountered in the text, with an emphasis on identifying its domain of validity.

Consider to this end the following bulk-brane quadratic action for a single real scalar

field,

S = −1

2

∫

d4xd2y
[

∂Mφ∂
Mφ+m2

Bφ
2
]

+
1

2

∫

d4x λ2φ
2 . (B.1)

(The unusual sign for the brane term is chosen to be consistent with its use in the main

text.) The exact propagator, G(x, y;x′, y′), for this theory satisfies the differential equation

[

∂M∂
M −m2

B + λ2δ
2(y)

]

G(x, y;x′, y′) = iδ4(x− x′)δ2(y − y′) , (B.2)

while the propagator in the absence of the brane coupling, D(x, y;x′, y′), instead satisfies

[

∂M∂
M −m2

B

]

D(x, y;x′, y′) = iδ4(x− x′)δ2(y − y′) . (B.3)

It is useful to regard these as the position-basis representation of two abstract op-

erators, G and D, so that G(x, y;x′, y′) = 〈x, y|G|x′, y′〉 (and similarly for D). In

this case the above relations can be written G−1 = D−1 − iV , where 〈x, y|V |x′, y′〉 =

λ2δ
2(y)δ4(x−x′)δ2(y−y′). Multiplying on the left by D and on the right by G then allows

this to be written as G = D + iDV G, whose position-basis expression is equivalent to the

integral equation

G(x, y;x′, y′) = D(x, y;x′, y′) + iλ2

∫

d4x̂ D(x, y; x̂, 0)G(x̂, 0;x′, y′) . (B.4)
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After Fourier transforming the translation-invariant xµ directions

G(x, y;x′, y′) =

∫

d4p

(2π)4
Gp(y; y

′) eip·(x−x′) , (B.5)

eq. (B.4) becomes the exact statement

Gp(y; y
′) = Dp(y; y

′) + iλ2Dp(y; 0)Gp(0; y
′) . (B.6)

Since this no longer involves convolutions it may be solved explicitly. Specializing first

to y = 0 implies Gp(0; y
′) = Dp(0; y

′)/[1 − iλ2Dp(0; 0)], which when re-substituted into

eq. (B.6) gives

Gp(y; y
′) = Dp(y; y

′) + iλ2
Dp(y; 0)Dp(0; y

′)
1 − iλ2Dp(0; 0)

. (B.7)

Notice that no approximations have been made that implicitly restrict us to small λ2.

The problem with the solution, eq. (B.7), is that the quantity Dp(0; 0) diverges, and

this observation lies at the root of the need for renormalization. The expression forDp(y; y
′)

may be explicitly constructed as the following mode sum, using polar coordinates {ym} =

{r, θ} in the transverse dimensions, with r = 0 representing the brane position:

Dp(r, θ; r
′, θ′) = −i

∞
∑

n=−∞
ein(θ−θ′)

∫ ∞

0

(

qdq

2π

)

1

p2 + q2 +m2
B

Jn(qr)Jn(qr′) , (B.8)

where6 p2 = pµp
µ. To isolate the divergence in Dp(0; 0) evaluate at r = r′ = 0 and use

Jn(0) = δn0 to get

DΛ
p (0; 0) = −i

∫ Λ

0

(

qdq

2π

)

1

p2 + q2 +m2
B

= − i

2π
ln

(

Λ

P

)

+O

(

P 2

Λ2

)

, (B.9)

where P 2 = p2 +m2
B.

Renormalization may also be performed without resorting to an expansion in powers

of λ2. The goal is to redefine λ2 = λ̄2(Λ) → λ̄2(µ) in such a way as to absorb the divergence

in DΛ(0; 0):

λ2

1 − iλ2DΛ
p (0; 0)

≡ λ̄2(µ)

1 − iλ̄2(µ)Dµ
p (0; 0)

, (B.10)

or, equivalently

1

λ̄2(Λ)
≡ 1

λ̄2(µ)
+ i
[

DΛ
p (0; 0) −Dµ

p (0; 0)
]

=
1

λ̄2(µ)
+

1

2π
ln

(

Λ

µ

)

, (B.11)

in agreement with the usage in the main text.

6The generalization of this expression to the case where the transverse geometry has a conical defect at

the brane position is given in ref. [18].
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C. Higher codimension

In this appendix we examine how the arguments of §2 change for a Higgs living in a

(4 + n)-dimensional bulk coupled to a codimension-n brane, with n ≥ 3.

We divide the discussion into a derivation of how the brane couplings renormalize in

arbitrary codimension, and then examine the energy density that governs the size of the

resulting scalar expectation value.

C.1 Coupling renormalization

We start with a discussion of brane coupling renormalization. The main complication in

the higher-codimension case is the appearance of power-law divergences, with all of the

pitfalls and complications which these entail for the low-energy description [28].

Consider the (n+ 4)-dimensional scalar field

S = −
∫

d4xdny

[

1

2
(∂Mφ∂

Mφ) +
1

2
m2

Bφ
2 + δn(y)Vb(φ)

]

, (C.1)

with brane potential

Vb = −1

2
λ2φ

2 +
1

4
λ4φ

4 , (C.2)

living in a flat space-time with metric

ds2 = ηµνdx
µdxν + dr2 + r2γab(θ)dθ

adθb . (C.3)

Here the θa are coordinates for the n−1 angular directions, whose total volume we denote by

̟ =
∫

d(n−1)θ
√
γ. We focus for simplicity on spherically symmetric solutions (independent

of the angular directions), although this assumption is not crucial (since higher modes in

the angular directions are regular at r = 0).

As for codimension 2, the relation between the propagator, G, in the presence of the

brane coupling, and the propagator, D, in its absence, is

Gk(y; y
′) = Dk(y; y

′) + iλ2
Dk(y; 0)Dk(0; y′)
1 − iλ2Dk(0; 0)

, (C.4)

and as before the need for renormalization may be traced to the divergence in Dk(0; 0).

The nature of this divergence can be divined from the mode sum giving the propagator,

D, in the absence of brane couplings

[

� −m2
B

]

D(x, y;x′, y′) = iδ4(x− x′)δn(y − y′) , (C.5)

which, in brane-Fourier space,

D(x, y;x′, y′) =

∫

d4p

(2π)4
Dp(y; y

′) eip·(x−x′) , (C.6)

has as solution

Dp(x;x
′) = −i

∫ ∞

0

qn−1dq

̟

1

p2 +m2
B + q2

[

1

(qr)ν
Jν(qr)

] [

1

(qr′)ν
Jν(qr′)

]

+ · · · , (C.7)
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with ν = (n − 2)/2. The ellipses in this last equation represent those terms involving the

nontrivial angular modes.

Using the asymptotic form for Jν in the limit qr ≪ 1: Jν(qr) = (qr)ν/[ν!2ν ] + O(qr),

we find

Dp(r = 0; r′ = 0) = − i

(ν!)2 22ν

∫ ∞

0

qn−1dq

̟

1

m2
B + p2 + q2

, (C.8)

which diverges as a power of the UV cutoff, Λ, as

DΛ̃
p (0; 0) = − i

(ν!)2 22ν

∫ Λ̃

0

qn−1dq

̟

1

m2
B + p2 + q2

. (C.9)

= − i

̟ (ν!)2 22ν

[

qn

nP 2
− qn+2

(n+ 2)P 4 2F1

(

1,
n+ 2

2
;
n+ 4

2
,− q2

P 2

)]Λ̃

0

, (C.10)

where P 2 = m2
B + p2 and 2F1(a, b; c; z) denotes the Hypergeometric function.

Our focus is on even n, n = 2m, in which case the hypergeometric function can be

simplified to the following terminating series

2F1(1,m+ 1,m+ 2, z) = −(m+ 1)z−(m+1)



log(1 − z) +
m
∑

j=1

zj

j



 . (C.11)

Using this in the expression of the brane-brane propagator for even codimensions, we get

DΛ̃
p (0; 0) =

i22−m

̟[Γ(m)]2

[

(−)m

2
P 2(m−1) log

(

1 +
q2

P 2

)

+
1

2

m−1
∑

j=1

(−)j−m

j
q2jP 2(m−1−j)

]Λ̃

0

. (C.12)

For even codimension, n = 2m, we redefine Λ2 = Λ̃2 + P 2, leading to

DΛ
p = − i22−m

̟[Γ(m)]2
(−P 2)m−1



log Λ +
m−1
∑

j=1

1

2j

(

1 − Λ2

P 2

)j


+ (finite) . (C.13)

For odd codimensions, a similar argument gives

DΛ
p = − i22−n

̟[Γ(n/2)]2

[n/2−1]
∑

j=0

(−)j
P 2jΛn−2−2j

n− 2 − 2j
+ (finite) , (C.14)

where [n/2 − 1] denotes the largest integer smaller than n/2 − 1.

Renormalization proceeds as for codimension two, with the requirement that

λ2(Λ)

1 − iλ2(Λ)DΛ
k (0, 0)

=
λ2(µ)

1 − iλ2(µ)Dµ
k (0, 0)

, (C.15)
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where µ is the renormalization scale, leading to the following expression,

1

λ2(Λ)
=

1

λ̄2(µ)
+ i
(

DΛ
k −Dµ

k

)

. (C.16)

The divergence of propagator on the brane also induces divergences in the expression

of the 4-point function, which should be absorbed by a renormalization of λ4,

G
(4)
k1,k2,k3,k4

(y1; y2; y3; y4) = −6i λ4

[

4
∏

i=1

G
(2)
ki

(yi; 0)

]

δ4

(

∑

i

ki

)

(C.17)

= −6i λ4

[

4
∏

i=1

Dki
(yi; 0)

1 − iλ2Dki
(0; 0)

]

δ4

(

∑

i

ki

)

. (C.18)

The quantity λ4/(1 − iλ2Dki
(0, 0))4 is finite if λ4 is renormalized in the following way

λ4(Λ) =
λ̄4

(

1 + iλ̄2

(

DΛ
k −Dµ

k

))4 . (C.19)

Similar expressions can be found for higher-point couplings.

C.2 Boundary condition and energy density

We now turn to the classical solutions for φ(r), and the boundary conditions which com-

municate the information of the brane potential to the bulk theory. Just as in the main

text the singular form of the bulk solutions require us to regularize the boundary condition

by evaluating it at r = ǫ rather than at r = 0. Smooth results are obtained as ǫ→ 0 once

the bare couplings are eliminated in terms of the renormalized couplings.

The classical solution to the bulk field equation that vanishes far from the brane is

φ(r) = φ̄
Kν(mBr)

(mBr)ν
. (C.20)

Integrating the equation of motion over the brane, we obtain the boundary condition

̟ǫn−1φ′ǫ = −λ2φǫ + λ4φ
3
ǫ . (C.21)

The energy density for such a field configuration is similarly given by

H = v

∫ ∞

ǫ
rn−1dr

[

1

2
(∂rφ)2 +

1

2
m2

Bφ
2

]

+ Ub(φ(ǫ))

= v
m2

B

2
φ̄2 ǫn+1 (mBǫ)

−nKν(mBǫ)Kν+1(mBǫ) + Ub(φ(ǫ)) . (C.22)

In general both of these last equations become finite once expressed in terms of renormal-

ized quantities, although the cancellation becomes more regularization dependent in the

higher-codimension case due to the appearance there of power-law divergences rather than

logarithms. Rather than working this through in complete generality, we restrict ourselves

here to an illustrative calculation for codimension three.
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C.3 Codimension-3

For a codimension-3 brane the divergent part of the brane-brane propagator goes as

DΛ
p = −2iΛ

π̟
, (C.23)

and so the divergent part of the boundary condition (C.21) cancels identically if 2Λ/π = ǫ.

The leading order part of the boundary condition becomes

φ̄

(

mB +
̟

λ̄2
− µ+

π̟3λ̄4

2λ̄4
2m

2
B

φ̄2

)

= 0 , (C.24)

where to simplify the notation we rescale µ → πµ/2. The system has solution φ̄ = 0 as

well as

φ̄2 = −
(

2λ̄4
2m

2
B

π̟3λ̄4

)

meff , (C.25)

although the second solution is only possible when

meff =

(

̟

λ̄2
− µ+mB

)

< 0 . (C.26)

These conclusions are consistent with the form of the energy density, which in this case is

H =

(

π̟

4m2
B

)

meff φ̄
2 +

λ̄4

4

(

̟

λ̄2mB

)4
(π

2

)2
φ̄4 . (C.27)

Notice that the criterion for having a nonzero v.e.v. in this case depends more strongly on

mB, relative to the codimension-2 case.

A similar argument can be made for higher codimensions. Notice that for codimension-

4 and higher, the propagator includes sub-leading divergences which should also be renor-

malized. Doing so, we recover a finite energy density with slightly different criteria on

having a nonzero v.e.v.

D. Bulk Goldstone modes

A natural worry arises when the Higgs is regarded as a bulk scalar while the Standard Model

gauge bosons are confined to a brane. Since the bulk SU(2)×U(1) rotations are not gauged,

their spontaneous breaking might be expected to bulk Goldstone modes, corresponding to

KK towers of bulk scalar modes whose lightest members are massless (or with masses set

by the KK scale, if the global symmetries are broken by boundary conditions). Since only

three of these 4D KK states are eaten by the Higgs mechanism, the remainder could survive

and generate a potentially dangerous large number of light states. In this section, we show

that only three massless Goldstone modes are produced, all of which are eaten by the gauge

fields on the brane.

We start with the argument in a nutshell: when choosing a specific vacuum, such as the

unitary gauge choice of the main text, one expects Goldstone modes connecting to nearby

vacua. Since all vacua have the same profile in the extra dimensions, the Goldstone modes
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also share this profile. The modes with the smallest energy cost have only momentum

along the brane directions, and so are effectively already four-dimensional. These modes

turn out to be the self-localized states of those components of the Higgs doublet that do

not acquire a v.e.v.

To see this explicitly we repeat the calculation of the light states in section 2.3, for the

Higgs doublet H. The equation of motion analogous to eq. (2.33) is

[

1

r2
(

(r∂r)
2 + ∂2

θ

)

+ ∂µ∂
µ −m2

B

]

H =
δ+(r)

2πr
(−λ2 + λ4H

⋆H)H . (D.1)

This equation may be linearized around the vacuum by setting

H =

(

0

ϕ(r)

)

+

∞
∑

n≥0

(

ζn
1 (r) + iζn

2 (r)

χn(r) + iζn
3 (r)

)

sin(nθ) , (D.2)

with ϕ(r) = φ̄K0(mBr) and where we introduce an infinite tower of excitation modes along

the angular direction. Each one of these modes satisfies the equations of motion

[

1

r
∂r (r∂r) −

n2

r2
− k2

]

χn =
δ+(r)

2πr

(

−λ2 + 3λ4ϕ
2(r)

)

χn (D.3)

[

1

r
∂r (r∂r) −

n2

r2
− k2

]

ζn
i =

δ+(r)

2πr

(

−λ2 + λ4ϕ
2(r)

)

ζn
i , (D.4)

where, as before, k2 = m2
B − ω2.

The field χ0 is the ‘physical’ self-localized state, discussed in the main text, and has

a mass as calculated in eq. (2.37) with (2.38). The same goes through for the zero mode

of the other fields ζ0
i , but taking into account the different factor of λ4 between equations

(D.3) and (D.4), their masses are given by

ω2
ζ0 = m2

B

[

1 − e−4π/λζ0

]

, (D.5)

with now
1

λζ0

=
1

λ2⋆

[

1 +
4π2λ̄4φ̄

2

λ3
2⋆

]

. (D.6)

In the broken phase, φ̄ is given by eq. (2.30) which leads to

1

λζ0

= 0 , (D.7)

showing there are three massless 4D Goldstone modes, ζ0
i . The bulk profile of these modes

is enforced by the boundary condition imposed on the brane, and as argued in section 3.1,

choosing unitary gauge on the brane removes these three massless states as they become

‘eaten’ by the brane gauge fields.

Turning now to the infinite tower of angular dependent modes (n 6= 0), the profile

of these modes is now of the form χn, ζn
i = Nn

i Kn(kr), where Nn
i is the normalization
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constant and we expect k to be determined by the the boundary condition (2.35) which

takes the form

2π r∂r

(

χn(r)

ζn
i (r)

)∣

∣

∣

∣

∣

ǫ

=

(

−λ2 +

(

3

1

)

λ4ϕ(r)2

) (

χn

ζn
i

)∣

∣

∣

∣

∣

ǫ

. (D.8)

In the limit ǫ→ 0, this reduces to

2nπNn
i (kǫ)−n

(

n! +
(n− 1)!

log(ǫmBeγ/2)

)

= O
(

(kǫ)−n+2
)

. (D.9)

We see we must have Nn
i = 0 if these modes are to remain bounded, and so there are

therefore no light modes of this form having ω < mB. All the remaining excitations along

the radial direction form a Kaluza-Klein tower of states starting at the bulk mass mB and

are thus harmless. There are therefore only three massless states ζ0
i playing the role of four-

dimensional Goldstone modes, one self-localized massive mode (χ) with mass 0 < m < mB

and a tower of Higgs excitations with mass higher than the bulk mass.
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